Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.955
Filtrar
1.
Nat Commun ; 14(1): 1995, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031229

RESUMO

Protein-protein interactions govern most biological processes. New protein assemblies can be introduced through the fusion of selected proteins with di/oligomerization domains, which interact specifically with their partners but not with other cellular proteins. While four-helical bundle proteins (4HB) have typically been assembled from two segments, each comprising two helices, here we show that they can be efficiently segmented in various ways, expanding the number of combinations generated from a single 4HB. We implement a segmentation strategy of 4HB to design two-, three-, or four-chain combinations for the recruitment of multiple protein components. Different segmentations provide new insight into the role of individual helices for 4HB assembly. We evaluate 4HB segmentations for potential use in mammalian cells for the reconstitution of a protein reporter, transcriptional activation, and inducible 4HB assembly. Furthermore, the implementation of trimerization is demonstrated as a modular chimeric antigen receptor for the recognition of multiple cancer antigens.


Assuntos
Fenômenos Fisiológicos Celulares , Mamíferos , Conformação Proteica , Multimerização Proteica , Proteínas , Animais , Fenômenos Biológicos , Mamíferos/fisiologia , Proteínas/química , Proteínas/fisiologia , Fenômenos Fisiológicos Celulares/fisiologia , Multimerização Proteica/fisiologia
2.
Andrologia ; 54(11): e14566, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36054713

RESUMO

Insulin-like peptide 3 (INSL3) is a peptide biomarker secreted specifically by the mature Leydig cells of the testes. It is constitutive, has low within-individual variance, and effectively measures the functional capacity of Leydig cells to make testosterone. In young adult men there is a large 10-fold range of serum INSL3 concentration, persisting into old age, and implying that later hypogonadal status might be programmed in early life. To determine whether maternal exposure to environmental endocrine disrupting compounds (EDCs) influences adult serum INSL3 concentration, using a retrospective paradigm, INSL3 was measured in young adult male rats (80-90 days) from the F1 generation of females maternally exposed to varied doses of bisphenol A (BPA), butylparaben, epoxiconazole, and fludioxonil as single compounds, as well as estrogenic and anti-androgenic mixtures of BPA and butylparaben, and di(2-ethylhexyl) phthalate and procymidone respectively. A mixture of BPA and butylparaben significantly reduced circulating INSL3 concentration in adult male progeny. The remaining compounds or mixtures tested, though sufficient to induce other effects in the F1 generation were without significant effect. Maternal exposure to low concentrations of some EDCs may be a contributing factor to the variation in the Leydig cell biomarker INSL3 in young adulthood, though caution is warranted translating results from rats to humans.


Assuntos
Dietilexilftalato , Disruptores Endócrinos , Feminino , Masculino , Humanos , Ratos , Animais , Adulto Jovem , Adulto , Células Intersticiais do Testículo , Estudos Retrospectivos , Exposição Materna , Proteínas/fisiologia , Insulina , Disruptores Endócrinos/toxicidade , Testículo , Testosterona , Dietilexilftalato/farmacologia , Antagonistas de Androgênios/farmacologia , Peptídeos/farmacologia , Biomarcadores
3.
Proc Natl Acad Sci U S A ; 119(29): e2117090119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858306

RESUMO

Retinal photoreceptors have a distinct transcriptomic profile compared to other neuronal subtypes, likely reflecting their unique cellular morphology and function in the detection of light stimuli by way of the ciliary outer segment. We discovered a layer of this molecular specialization by revealing that the vertebrate retina expresses the largest number of tissue-enriched microexons of all tissue types. A subset of these microexons is included exclusively in photoreceptor transcripts, particularly in genes involved in cilia biogenesis and vesicle-mediated transport. This microexon program is regulated by Srrm3, a paralog of the neural microexon regulator Srrm4. Despite the fact that both proteins positively regulate retina microexons in vitro, only Srrm3 is highly expressed in mature photoreceptors. Its deletion in zebrafish results in widespread down-regulation of microexon inclusion from early developmental stages, followed by other transcriptomic alterations, severe photoreceptor defects, and blindness. These results shed light on the transcriptomic specialization and functionality of photoreceptors, uncovering unique cell type-specific roles for Srrm3 and microexons with implications for retinal diseases.


Assuntos
Proteínas , Segmento Externo das Células Fotorreceptoras da Retina , Fatores de Processamento de Serina-Arginina , Visão Ocular , Animais , Éxons , Deleção de Genes , Humanos , Proteínas/genética , Proteínas/fisiologia , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/fisiologia , Transcriptoma , Visão Ocular/genética , Visão Ocular/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
4.
Methods Mol Biol ; 2499: 135-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696078

RESUMO

Glycosylation involves the attachment of carbohydrate sugar chains, or glycans, onto an amino acid residue of a protein. These glycans are often branched structures and serve to modulate the function of proteins. Glycans are synthesized through a complex process of enzymatic reactions that occur in the Golgi apparatus in mammalian systems. Because there is currently no sequencer for glycans, technologies such as mass spectrometry is used to characterize glycans in a biological sample to ascertain its glycome. This is a tedious process that requires high levels of expertise and equipment. Thus, the enzymes that work on glycans, called glycogenes or glycoenzymes, have been studied to better understand glycan function. With the development of glycan-related databases and a glycan repository, bioinformatics approaches have attempted to predict the glycosylation pathway and the glycosylation sites on proteins. This chapter introduces these methods and related Web resources for understanding glycan function.


Assuntos
Aminoácidos/metabolismo , Complexo de Golgi/metabolismo , Mamíferos/metabolismo , Polissacarídeos/metabolismo , Aminoácidos/química , Animais , Biologia Computacional , Glicogênio/metabolismo , Glicosilação , Espectrometria de Massas , Polissacarídeos/química , Proteínas/fisiologia
5.
Ann Clin Lab Sci ; 52(1): 86-94, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35181621

RESUMO

OBJECTIVE: Colorectal cancer (CRC) is a common prevalent malignant tumor globally. The prognosis of CRC patients remains poor due to a lack of effective treatment strategy. Proline-rich 11 (PRR11) is an emerging oncogene in cancers, while its effect in CRC remains unclear. Hence, the present study aimed to identify the function of PRR11 on CRC progression and study the detailed mechanism. METHODS: Cell proliferation ability was determined by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) staining. Transwell invasion assay detected cell invasion ability. Wound healing assay assessed cell migration ability. Xenograft tumor was established to evaluate tumor growth. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and immunohistochemistry were performed to determine mRNA or protein levels. RESULTS: PRR11 was elevated in CRC. PRR11 silencing suppressed CRC cell proliferation, invasion, and migration ability. Besides, PRR11 silencing inhibited EGFR/ ERK/ AKT pathway via restraining Collagen triple helix repeat containing-1 (CTHRC1) expression. Furthermore, knockdown of PRR11 suppressed CRC tumor growth in vivo. CONCLUSION: PRR11 was highly expressed in CRC. PRR11 silencing suppressed proliferation, invasion, migration, and tumor growth of CRC through inhibiting the EGFR/ERK/AKT pathway via restraining CTHRC1 expression. PRR11 may be a valuable therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Proteínas , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Neoplasias Colorretais/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas da Matriz Extracelular/genética , Inativação Gênica , Humanos , Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
Biomolecules ; 12(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204657

RESUMO

Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as GI hormones, regulating numerous physiological processes such as gastric emptying, gastric acid release, insulin secretion, bowel movements, or intestinal barrier function. Furthermore, it has been recently demonstrated that AM/PAMP have an impact on gut microbiome composition, inhibiting the growth of bacteria related with disease and increasing the number of beneficial bacteria such as Lactobacillus or Bifidobacterium. Due to their wide functions in the GI tract, AM and PAMP are involved in several digestive pathologies such as peptic ulcer, diabetes, colon cancer, or inflammatory bowel disease (IBD). AM is a key protective factor in IBD onset and development, as it regulates cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function and mucosal epithelial repair, and promotes a beneficial gut microbiome composition. AM and PAMP are relevant GI hormones that can be targeted to develop novel therapeutic agents for IBD, other GI disorders, or microbiome-related pathologies.


Assuntos
Adrenomedulina , Proteínas , Trato Gastrointestinal , Mucosa Intestinal , Fragmentos de Peptídeos , Proteínas/fisiologia
7.
Nat Genet ; 54(1): 62-72, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903892

RESUMO

The vertebrate left-right axis is specified during embryogenesis by a transient organ: the left-right organizer (LRO). Species including fish, amphibians, rodents and humans deploy motile cilia in the LRO to break bilateral symmetry, while reptiles, birds, even-toed mammals and cetaceans are believed to have LROs without motile cilia. We searched for genes whose loss during vertebrate evolution follows this pattern and identified five genes encoding extracellular proteins, including a putative protease with hitherto unknown functions that we named ciliated left-right organizer metallopeptide (CIROP). Here, we show that CIROP is specifically expressed in ciliated LROs. In zebrafish and Xenopus, CIROP is required solely on the left side, downstream of the leftward flow, but upstream of DAND5, the first asymmetrically expressed gene. We further ascertained 21 human patients with loss-of-function CIROP mutations presenting with recessive situs anomalies. Our findings posit the existence of an ancestral genetic module that has twice disappeared during vertebrate evolution but remains essential for distinguishing left from right in humans.


Assuntos
Evolução Biológica , Padronização Corporal , Redes Reguladoras de Genes , Metaloproteases , Animais , Humanos , Padronização Corporal/genética , Padronização Corporal/fisiologia , Cílios/genética , Mutação com Perda de Função , Metaloproteases/genética , Metaloproteases/fisiologia , Proteínas/genética , Proteínas/fisiologia , Vertebrados/genética
8.
STAR Protoc ; 2(4): 100955, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877547

RESUMO

CausalPath (causalpath.org) evaluates proteomic measurements against prior knowledge of biological pathways and infers causality between changes in measured features, such as global protein and phospho-protein levels. It uses pathway resources to determine potential causality between observable omic features, which are called prior relations. The subset of the prior relations that are supported by the proteomic profiles are reported and evaluated for statistical significance. The end result is a network model of signaling that explains the patterns observed in the experimental dataset. For complete details on the use and execution of this protocol, please refer to Babur et al. (2021).


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas , Proteômica/métodos , Transdução de Sinais/fisiologia , Causalidade , Bases de Dados de Proteínas , Humanos , Proteínas/metabolismo , Proteínas/fisiologia , Software
9.
Acta Med Okayama ; 75(6): 671-675, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34955533

RESUMO

Histidine-rich glycoprotein (HRG) is a 75 kDa plasma protein that is synthesized in the liver of many verte-brates and present in their plasma at relatively high concentrations of 100-150 µg/mL. HRG is an abundant and well-characterized protein having a multidomain structure that enable it to interact with many ligands, func-tion as an adaptor molecule, and participate in numerous physiological and pathological processes. As a plasma protein, HRG has been reported to regulate vascular biology, including coagulation, fibrinolysis and angiogenesis, through its binding with several ligands (heparin, FXII, fibrinogen, thrombospondin, and plas-minogen) and interaction with many types of cells (endothelial cells, erythrocytes, neutrophils and platelets). This review aims to summarize the roles of HRG in maintaining vascular homeostasis and regulating angiogen-esis in various pathological conditions.


Assuntos
Homeostase/fisiologia , Proteínas/fisiologia , Doenças Vasculares/fisiopatologia , Coagulação Sanguínea , Proteínas Sanguíneas , Células Endoteliais/fisiologia , Fibrinólise , Humanos
10.
BMC Urol ; 21(1): 143, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625065

RESUMO

BACKGROUND: FAM83H was originally reported to be essential for dental enamel formation. However, FAM83H has recently been implicated in tumorigenesis and tumor progression. Analysis of a publicly available gene expression database revealed a significant correlation between FAM83H and Nectin1 mRNA expression and bladder urothelial carcinoma (BUC). Therefore, we investigated the association between FAM83H and Nectin1 expression levels and the survival and recurrence of BUC in BUC patients using a tissue microarray. METHODS: We performed immunohistochemical staining of FAM83H and Nectin1 in 165 human BUC tissue sections, and analyzed the prognostic significance of FAM83H and Nectin1 expression. RESULTS: Both FAM83H and Nectin1 were mainly expressed in the cytoplasm, and their expression was significantly associated. FAM83H expression was significantly correlated with higher histologic grade, higher T stage, higher TNM stage, and recurrence. Nectin1 expression was significantly associated with higher histologic grade and recurrence. Univariate analysis showed FAM83H expression and Nectin1 expression were significantly associated with worse overall survival (OS) and shorter relapse-free survival (RFS) of BUC patients. In multivariate analysis, levels of FAM83H and Nectin1 were independent indicators of shorter survival of BUC patients. CONCLUSIONS: Our results suggest that FAM83H and Nectin1 are important in the progression of BUC, and that expression patterns of these two proteins can be used as prognostic indicators of survival in BUC patients.


Assuntos
Carcinoma de Células de Transição/mortalidade , Nectinas/fisiologia , Proteínas/fisiologia , Neoplasias da Bexiga Urinária/mortalidade , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida
11.
STAR Protoc ; 2(4): 100887, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34704075

RESUMO

Phase separation of proteins regulates transcription. Here, we present a protocol to manipulate phase separation capacity of a protein. We use this protocol to disrupt phase separation by mutating residues at intrinsically disordered regions (IDRs). Further, we rescue the disabled phase separation by fusing an IDR known to drive phase separation. Phase separation promotes cell fate transitions, whereas disruption of phase attenuates the transitions. The major challenge is how to effectively predict mutation residues. For complete details on the use and execution of this protocol, please refer to Wang et al. (2021).


Assuntos
Fenômenos Fisiológicos Celulares/genética , Clonagem Molecular/métodos , Técnicas Citológicas/métodos , Proteínas , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Vetores Genéticos/genética , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/fisiologia , Camundongos , Proteínas/genética , Proteínas/metabolismo , Proteínas/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
PLoS Comput Biol ; 17(10): e1009463, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34710081

RESUMO

Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills.


Assuntos
Crowdsourcing/métodos , Ontologia Genética , Anotação de Sequência Molecular/métodos , Biologia Computacional , Bases de Dados Genéticas , Humanos , Proteínas/genética , Proteínas/fisiologia
13.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665110

RESUMO

Viperin has antiviral function against many viruses, including dengue virus (DENV), when studied in cells in culture. Here, the antiviral actions of viperin were defined both in vitro and in a mouse in vivo model of DENV infection. Murine embryonic fibroblasts (MEFs) derived from mice lacking viperin (vip-/-) showed enhanced DENV infection, accompanied by increased IFN-ß and induction of ISGs; IFIT1 and CXCL-10 but not IRF7, when compared to wild-type (WT) MEFs. In contrast, subcutaneous challenge of immunocompetent WT and vip-/- mice with DENV did not result in enhanced infection. Intracranial infection with DENV resulted in body weight loss and neurological disease with a moderate increase in mortality in vip-/- compared with WT mice, although this was not accompanied by altered brain morphology, immune cell infiltration or DENV RNA level in the brain. Similarly, DENV induction of IFN-ß, IFIT1, CXCL-10, IRF7 and TNF-α was not significantly different in WT and vip-/- mouse brain, although there was a modest but significant increase in DENV induction of IL-6 and IfI27la in the absence of viperin. NanoString nCounter analysis confirmed no significant difference in induction of a panel of inflammatory genes in WT compared to vip-/- DENV-infected mouse brains. Further, polyI:C stimulation of bone marrow-derived macrophages (BMDMs) induced TNF-α, IFN-ß, IL-6 and Nos-2, but responses were not different in BMDMs generated from WT or vip-/- mice. Thus, while there is significant evidence of anti-DENV actions of viperin in some cell types in vitro, for DENV infection in vivo a lack of viperin does not affect systemic or brain susceptibility to DENV or induction of innate and inflammatory responses.


Assuntos
Antivirais , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Dengue/imunologia , Dengue/virologia , Imunidade Inata , Proteínas/fisiologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Células Cultivadas , Inflamação , Fator Regulador 7 de Interferon/genética , Interferon beta/biossíntese , Interferon beta/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteínas/genética , Replicação Viral
14.
Amino Acids ; 53(10): 1473-1492, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34546444

RESUMO

Among low molecular weight substances, polyamines (spermidine, spermine and their precursor putrescine) are present in eukaryotic cells at the mM level together with ATP and glutathione. It is expected therefore that polyamines play important roles in cell proliferation and viability. Polyamines mainly exist as a polyamine-RNA complex and regulate protein synthesis. It was found that polyamines enhance translation from inefficient mRNAs. The detailed mechanisms of polyamine stimulation of specific kinds of protein syntheses and the physiological functions of these proteins are described in this review. Spermine is metabolized into acrolein (CH2 = CH-CHO) and hydrogen peroxide (H2O2) by spermine oxidase. Although it is thought that cell damage is mainly caused by reactive oxygen species (O2-, H2O2, and •OH), it was found that acrolein is much more toxic than H2O2. Accordingly, the level of acrolein produced becomes a useful biomarker for several tissue-damage diseases like brain stroke. Thus, the mechanisms of cell toxicity caused by acrolein are described in this review.


Assuntos
Acroleína/metabolismo , Infarto Encefálico/metabolismo , Células Eucarióticas/metabolismo , Poliaminas/metabolismo , Biossíntese de Proteínas/fisiologia , Acroleína/toxicidade , Animais , Aterosclerose , Infarto Encefálico/patologia , Proteína C-Reativa/análise , Demência/metabolismo , Humanos , Interleucina-6/sangue , Fatores de Iniciação de Peptídeos/fisiologia , Poliaminas/química , Proteínas/química , Proteínas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Síndrome de Sjogren/metabolismo
15.
Sci Rep ; 11(1): 16149, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373481

RESUMO

The outer hair cell (OHC) membrane harbors a voltage-dependent protein, prestin (SLC26a5), in high density, whose charge movement is evidenced as a nonlinear capacitance (NLC). NLC is bell-shaped, with its peak occurring at a voltage, Vh, where sensor charge is equally distributed across the plasma membrane. Thus, Vh provides information on the conformational state of prestin. Vh is sensitive to membrane tension, shifting to positive voltage as tension increases and is the basis for considering prestin piezoelectric (PZE). NLC can be deconstructed into real and imaginary components that report on charge movements in phase or 90 degrees out of phase with AC voltage. Here we show in membrane macro-patches of the OHC that there is a partial trade-off in the magnitude of real and imaginary components as interrogation frequency increases, as predicted by a recent PZE model (Rabbitt in Proc Natl Acad Sci USA 17:21880-21888, 2020). However, we find similar behavior in a simple 2-state voltage-dependent kinetic model of prestin that lacks piezoelectric coupling. At a particular frequency, Fis, the complex component magnitudes intersect. Using this metric, Fis, which depends on the frequency response of each complex component, we find that initial Vh influences Fis; thus, by categorizing patches into groups of different Vh, (above and below - 30 mV) we find that Fis is lower for the negative Vh group. We also find that the effect of membrane tension on complex NLC is dependent, but differentially so, on initial Vh. Whereas the negative group exhibits shifts to higher frequencies for increasing tension, the opposite occurs for the positive group. Despite complex component trade-offs, the low-pass roll-off in absolute magnitude of NLC, which varies little with our perturbations and is indicative of diminishing total charge movement, poses a challenge for a role of voltage-driven prestin in cochlear amplification at very high frequencies.


Assuntos
Células Ciliadas Auditivas Externas/fisiologia , Proteínas/fisiologia , Estimulação Acústica , Animais , Cóclea/fisiologia , Capacitância Elétrica , Cobaias , Cinética , Mecanotransdução Celular/fisiologia , Potenciais da Membrana/fisiologia , Modelos Biológicos , Dinâmica não Linear , Técnicas de Patch-Clamp , Conformação Proteica , Proteínas/química
16.
Nat Cell Biol ; 23(8): 894-904, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34354233

RESUMO

The shieldin complex functions as the downstream effector of 53BP1-RIF1 to promote DNA double-strand break end-joining by restricting end resection. The SHLD2 subunit binds to single-stranded DNA ends and blocks end resection through OB-fold domains. Besides blocking end resection, it is unclear how the shieldin complex processes SHLD2-bound single-stranded DNA and promotes non-homologous end-joining. Here, we identify a downstream effector of the shieldin complex, ASTE1, as a structure-specific DNA endonuclease that specifically cleaves single-stranded DNA and 3' overhang DNA. ASTE1 localizes to DNA damage sites in a shieldin-dependent manner. Loss of ASTE1 impairs non-homologous end-joining, leads to hyper-resection and causes defective immunoglobulin class switch recombination. ASTE1 deficiency also causes resistance to poly(ADP-ribose) polymerase inhibitors in BRCA1-deficient cells owing to restoration of homologous recombination. These findings suggest that ASTE1-mediated 3' single-stranded DNA end cleavage contributes to the control of DSB repair choice by 53BP1, RIF1 and shieldin.


Assuntos
Reparo do DNA por Junção de Extremidades , Desoxirribonuclease I/fisiologia , Proteínas/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Feminino , Instabilidade Genômica , Células HEK293 , Humanos , Switching de Imunoglobulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão
17.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360575

RESUMO

Many proteins have been found to operate in a complex with various biomolecules such as proteins, nucleic acids, carbohydrates, or lipids. Protein complexes can be transient, stable or dynamic and their association is controlled under variable cellular conditions. Complexome profiling is a recently developed mass spectrometry-based method that combines mild separation techniques, native gel electrophoresis, and density gradient centrifugation with quantitative mass spectrometry to generate inventories of protein assemblies within a cell or subcellular fraction. This review summarizes applications of complexome profiling with respect to assembly ranging from single subunits to large macromolecular complexes, as well as their stability, and remodeling in health and disease.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/fisiologia , Proteínas/química , Proteínas/fisiologia , Animais , Humanos
18.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34406117

RESUMO

Viperin is a gene with a broad spectrum of antiviral functions and various mechanisms of action. The role of viperin in herpes simplex virus type 1 (HSV-1) infection is unclear, with conflicting data in the literature that is derived from a single human cell type. We have addressed this gap by investigating viperin during HSV-1 infection in several cell types, spanning species and including immortalized, non-immortalized and primary cells. We demonstrate that viperin upregulation by HSV-1 infection is cell-type-specific, with mouse cells typically showing greater increases compared with those of human origin. Further, overexpression and knockout of mouse, but not human viperin significantly impedes and increases HSV-1 replication, respectively. In primary mouse fibroblasts, viperin upregulation by infection requires viral gene transcription and occurs in a predominantly IFN-independent manner. Further we identify the N-terminal domain of viperin as being required for the anti-HSV-1 activity. Interestingly, this is the region of viperin that differs most between mouse and human, which may explain the apparent species-specific activity against HSV-1. Finally, we show that HSV-1 virion host shutoff (vhs) protein is a key viral factor that antagonises viperin in mouse cells. We conclude that viperin can be upregulated by HSV-1 in mouse and human cells, and that mouse viperin has anti-HSV-1 activity.


Assuntos
Herpes Simples , Herpesvirus Humano 1/imunologia , Proteínas/fisiologia , Animais , Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Fibroblastos/citologia , Fibroblastos/imunologia , Herpes Simples/imunologia , Herpes Simples/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Ribonucleases/imunologia , Proteínas Virais/imunologia
19.
J Biol Chem ; 297(3): 101081, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403699

RESUMO

The human APOBEC3A (A3A) cytidine deaminase is a powerful DNA mutator enzyme recognized as a major source of somatic mutations in tumor cell genomes. However, there is a discrepancy between APOBEC3A mRNA levels after interferon stimulation in myeloid cells and A3A detection at the protein level. To understand this difference, we investigated the expression of two novel alternative "A3Alt" proteins encoded in the +1-shifted reading frame of the APOBEC3A gene. A3Alt-L and its shorter isoform A3Alt-S appear to be transmembrane proteins targeted to the mitochondrial compartment that induce membrane depolarization and apoptosis. Thus, the APOBEC3A gene represents a new example wherein a single gene encodes two proapoptotic proteins, A3A cytidine deaminases that target the genome and A3Alt proteins that target mitochondria.


Assuntos
Citidina Desaminase/genética , Citidina Desaminase/fisiologia , Mitocôndrias/genética , Proteínas/genética , Proteínas/fisiologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Citidina Desaminase/metabolismo , DNA/genética , Mutação da Fase de Leitura/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Mitocôndrias/metabolismo , Mutação/genética , Proteínas/metabolismo , RNA Mensageiro/genética , Fases de Leitura/genética
20.
Reprod Biomed Online ; 43(3): 370-378, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34272164

RESUMO

Endometriosis is a chronic oestrogen-dependent gynaecological disorder characterized by non-menstrual pelvic pain, infertility and the extrauterine growth of endometrial-like glands and stroma. It has been noted that the eutopic endometrium of women with endometriosis is functionally distinct from that of women without endometriosis. Moreover, ectopic endometrial implants are functionally different from the eutopic endometrium of women with endometriosis. However, the mechanisms directing these differences are ill-defined. It is proposed here that small membrane-bound extracellular vesicles called exosomes are important vehicles in the protection and transport of signalling molecules central to the dysregulation of endometrial function in women with endometriosis. Therefore, a critical review of the literature linking exosomes and their cargo to the pathobiology of endometriosis was conducted. Circulating peritoneal fluid and endometrial cell exosomes contained long non-coding RNA, miRNA and proteins involved in histone modification, angiogenesis and immune modulation that differed significantly in women with endometriosis compared with controls. Moreover, experimental evidence supports a role for exosomes and their cargo in angiogenesis, neurogenesis, immune modulation and endometrial stromal cell invasion. It is therefore suggested that exosomes play an important role in the pathophysiology of endometriosis.


Assuntos
Endometriose/fisiopatologia , Endométrio/fisiologia , Exossomos/fisiologia , Doenças Peritoneais/fisiopatologia , Endometriose/genética , Endometriose/metabolismo , Endometriose/patologia , Endométrio/citologia , Células Epiteliais/fisiologia , Exossomos/metabolismo , Feminino , Humanos , Sistema Imunitário/fisiopatologia , MicroRNAs/metabolismo , MicroRNAs/fisiologia , Neovascularização Patológica/fisiopatologia , Doenças Peritoneais/genética , Doenças Peritoneais/metabolismo , Doenças Peritoneais/patologia , Proteínas/metabolismo , Proteínas/fisiologia , RNA não Traduzido/metabolismo , RNA não Traduzido/fisiologia , Células Estromais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA